

Next Generation Passive Optical Networks

Charles Chen
Cortina Systems

FTTH China 2008 Cortina Systems, Inc 1

Agenda

- Industry and technology trends
- Next-generation PON chipset
- 10G EPON design consideration
- Concluding remarks

Internet: Era of Zettabyte

- Annual global IP Traffic will exceed half a zettabyte in four years.
- Global IP traffic will nearly double every two years through 2012
- Internet video is now approximately one-quarter of all consumer Internet traffic
- The sum of all forms of video (TV, VoD, Internet, and P2P) will account for close to 90 percent of consumer traffic by 2012
- In 2010 Internet video will surpass P2P in volume
- In 2012, Internet video will be nearly 400 times the U.S. Internet backbone in 2000
- Mobile data traffic will double each year from now through 2012

Source: Cisco

Prefixes Kilo - 10³

Mega - 106

Giga - 10°

Tera - 10¹² Peta - 10¹⁵

Exa - 1018

Zetta - 10²¹

Broadband Race (1Q05 - 1Q08)

Source: broadbandtrends.com

FTTH China 2008 Cortina Systems, Inc 4

Access Technology Evolution (NA)

Worldwide FTTH Penetration Ranking

Economies with the Highest Penetration of Fiber-to-the-Home / Building+LAN

Mid-Year 2008 Ranking

Source: Fiber-to-the-Home Council

Jul 08

Economies where majority architecture is Fiber-to-the-Home

Economies where majority architecture is Fiber-to-the-Building+LAN

FTTH Households Growth (NA)

FTTH China 2008 Cortina Systems, Inc 7

Home Bandwidth Growth

Moore's Law: Era of Tera

Ethernet Timeline

Metcalfe's Law and Network Evolution Theory

Metcalfe's Law

The value of a telecommunication network is proportional to the square of the number of users of the system (n^2) .

Networks Theory of Evolution

One and only one competing technology evolves to dominate a market via market selection.

Evolution of Access Networks

Evolution of EPON Chipset

1996

1st Generation Chipset 2nd Generation Chipset 3rd Generation Chipset 4th Generation Chipset

- Single Family ONU (SFU)
- Single PON port OLT
- Targeted at Japan and Korea markets
- Lack of key feature support
- Based on vendorspecific OAM
- High cost per subscriber

- 4 PON port OLT
- SFU with extended feature set
- Based on carrier-or country defined OAM extension
- Enhanced performance
- Reduced cost per subscriber

- MDU with integrated LAN and DSL support
- SFU with integrated residential gateway
- SFU with integrated VolP
- SFU with small footprint
- Significantly cost reduction for volume deployment

- 10G EPON
- Dual-rate and dual mode OLT
- Asymmetric or symmetric ONU chip
- International agreement for multivendor interoperability (encryption and management)

Today

ONU Chip Types and Design Objectives

Low Cost

- Small footprint
- Fit into a SFP module
- Fit into other devices
- Reduced cost

High Integration

- Integrated with residential gateway
- VoIP and security support
- Value added service
- Reduced total system cost

SFU-Residential Gateway Chip

MDU

- Multi-subscriber support
- Integrated with DSL or LAN
- Enhanced system performance

MDU Chip

MDU Solution Comparison

High Density OLT for Migration

10G EPON Standard Development

March 2006

- CFI for 10G EPON

■ Sept 2006

- The first official task force meeting
- 802.3av: PHY for 10G EPON

Nov 2007

Draft 1.0 published

July 2008

Draft 2.0 published

Mar 2009

 Draft 3.0 to be published

■ Sept 2009

 Final standard to be published

Baseline Proposal

- Serial 10.3125 Gb/s transmission
 - Existing "10GBase-R" PHY is the starting point
 - 64b/66b line code is used as basic protocol
- FEC code built-in from the start
 - Inclination is to use a strong "E-FEC", with more gain than RS(255,239)
 - Rate adaptation method is sub-rating (payload less than 10G)

Two "nominal" PHYs: 10/1 and 10/10

- Asymmetric rate: 10G downstream and 1G upstream
- Symmetric rate: 10G downstream and 10G upstream

Coexistence with 1G EPON on the same plant

- Downstream: wavelength multiplexing (1490nm and 1590 nm)
- Upstream: TDMA sharing (wavelength overlapping)

Three power budgets

PR10 = 20dB, PR20 = 24dB, PR30 = 29dB

10G EPON Protocol Stack

- Physical layer specification including RS, PCS, and PMD
- Minimum change at the MPCP and MAC layer to address co-existence

PMD Types and Power Budgets

Description	Low Power Budget		Medium Power Budget		PRX20 PR20		Unit
	PRX10	PR10	PRX20	PR20	PRX20	PR20	
Maximum Channel Insertion Loss	20		24 29		29	dB	
Maximum Reach	≥'	10	≥20			km	
Downstream Data Rate			10			Gbps	
Upstream Data Rate	1	10	1	10	1	10	Gbps
Nominal Downstream Wavelength	1590			1577		nm	
Downstream Wavelength Bandwidth	20			6		nm	
Nominal Upstream Wavelength	1310	1270	1310	1270	1310	1270	nm
Upstream Wavelength Bandwidth	100	20	100	20	100	20	nm

FTTH China 2008 Cortina Systems, Inc 19

10G EPON Data Path Flows

Downstream

<u>Upstream</u>

- Based on 10GBASE-R with major modifications in PCS and RS sublayers
- 64b/66b line coding and scramblers, and Forward Error Correction = RS(255, 223)

1G EPON and 10G EPON Co-existence

EPON Migration Path

Wavelength Allocation

FCS

Discovery Gate MPCP Message

Existing Discovery Gate

Destination Address
Source Address
Length/Type = 0x8808
Opcode = 0x0002
Timestamp
Number of Grants/Flags
Grant #1 Start Time
Grant # 1 Length
Sync Time
Pad/Reserved

New Discovery Gate

Destination Address	
Source Address	
Length/Type = 0x8808	
Opcode = 0x0002	
Timestamp	
Number of Grants/Flags	
Grant #1 Start Time	
Grant # 1 Length	
Sync Time	1
Discovery Information (2Bytes)	
Pad/Reserved	
FCS	

Bit Flag Field		Values		
0	OLT I is 1G US capable	0 - OLT supports 1G US 1 - OLT doesn't support 1G US		
1	OLT is 10 G US capable	0 - OLT doesn't 10G US 1 - OLT supports 10G US		
2-3	Reserved	Ignored upon reception		
4	OLT is opening 1G discovery window	0 – OLT can receive 1G in the window 1 – OLT cannot receive 1G in this window		
5	OLT is opening 10G discovery window	0 – OLT cannot receive 10G in this window 1 – OLT can receive 10G in this window		
6 - Reserved 15		Ignored upon reception		

Register Request MPCP Message

Existing Register Request

Destination Address
Source Address
Length/Type = 0x8808
Opcode = 0x0004
Timestamp
Flags
Pending Grants
Pad/Reserved
FCS

New Register Request

Destination Address
Source Address
Length/Type = 0x8808
Opcode = 0x0004
Timestamp
Flags
Pending Grants
Discovery Information (2Bytes)
Laser On Time (1 Byte)
Laser Off Time (1 Byte)
Pad/Reserved
FCS

Bit	Flag Field	Values		
0	ONUTIS 1G US capable	0 - ONU supports 1G US 1 - ONU doesn't support 1G US		
1	ONU is 10 G US capable	0 – ONU doesn't 10G US 1 – ONU supports 10G US		
2-3	Reserved	Ignored upon reception		
4	1G registration attempt	0 – 1G registration is attempted 1 – 1G registration is not attempted		
5 10G registration attempt		0 – 10G registration is not attempted 1 – 10G registration is attempte		
6- 15	Reserved	Ignored upon reception		

- ONU laser on and off times information to DBA at the OLT can improve the upstream throughput
- Register message echo those values

Register MPCP Message

Existing Register

Destination Address

Source Address

Length/Type = 0x8808

Opcode = 0x0005

Timestamp

Assigned Port

Flags

Sync Time

Echoed Pending Grants

Pad/Reserved

FCS

New Register

Destination Address

Source Address

Length/Type = 0x8808

Opcode = 0x0004

Timestamp

Assigned Port

Flags

Sync Time

Echoed Pending Grants

Echoed Laser On Time

(1 Byte)

Echoed Laser Off Time

(1 Byte)

Pad/Reserved

FCS

- Register acknowledges the values of laser on and laser off from the ONU
- OLT DBA uses those values to calculate the grant window
- This dynamic information is designed to improve the upstream utilization
- Standard-defined default value for laser on or laser off is 512 ns, but today's optical transceivers can achieve 64ns

10G EPON Design Considerations

- Many possible choices for OLT and ONU design
 - Single rate or dual rate support in each direction
 - Major impact on the network upgrade, component cost, and system performance
- Highly recommended
 - Dual rate OLT (two types of OLT)
 - Single rate ONU (three types of ONU)
- Single DBA engine due to upstream wavelength overlap
 - Single logical upstream channel (aggregated rate: 1G <-> 10G)
 - Two logical downstream channels
 - Fair bandwidth allocation among 1G ONUs and 10G ONUs
- Downstream multicast
 - Two logical multicast channels (LLID= 0x7FFF for 1G EPON, LLID=0x7FFE for 10G EPON)

10G EPON Operation Example

10G and 1G EPON Summary

Speed Item	1G EPON	10G EPON
Downstream wavelength	1490nm	1590nm or 1577nm
Upstream wavelength	1310nm	1270nm
PMD Type	PX10, and PX20	PRX10, PRX20, PRX30 PR10, PR20, PR30
PCS line coding	10b/8b	64b/66b
Single broadcast channel (SCB)	0x7FFF	0x7FFE
Mode of operation	Symmetric operation	Asymmetric or symmetric operation
Forward error correction	Optional (Frame based)	Mandatory, RS(255,223)

FTTH China 2008 Cortina Systems, Inc 29

Concluding Remarks

Industry and technology trends

- Internet is approaching Zettabyte era
- Moore's law continues for a foreseeable future: Era of Tera
- PON chip cost and performance can surpass any past technology, thanks to the advancement in silicon technology

PON chips continue to evolve

- Driven by Internet growth and market demand
- Low cost, high integration, and enhanced performance
- Application specific ONUs
- High density OLT

10G EPON is the next generation solution

- MDU applications and 100Mbps to homes
- Fiber exhaustion
- Key design considerations

Thank You

www.cortina-systems.com

FTTH China 2008 Cortina Systems, Inc 31