

Delivering High Quality Service over FTTH

Amir Sheffer, PMC-Sierra

- PMC-Sierra Overview
 - PMC is the only vendor in the world to offer OLT and ONU/ONT for ALL
- Fiber Deployment Models
- Downstream Bridging
- TCP Download
- Congestion Management

PINC PMC-SIERRA Enabling connectivity. Empowering people.

PMC-Sierra Overview

- PMC-Sierra is the premier Internet infrastructure semiconductor solution provider
- Major areas of product focus include:
 - COMMUNICATIONS: WAN Infrastructure (Wireline; Wireless), FTTH (EPON; GPON)
 - ENTERPRISE: Enterprise Storage (FC/SAS/SATA), Laser Printers, Networking, SMB NAS
- 2008 revenues totaled \$525 million; net cash of \$286 million*
- Company has approximately 1,000 employees worldwide (Q2'09)

*(as of June 28, 2009)

PMC-Sierra's FTTH Gbit/s PON Advantages

- High performance, field proven end-to-end solutions for EPON (IEEE 802.3ah Ethernet in the First Mile) and GPON (ITU-T G.984) standards
- PMC technical team co-wrote IEEE 802.ah standard that first defined
 Gbit/s PON FTTH technology
- Enable configurable high system performance in a multi-service environment for access, wireless backhaul and cable TV networks
- Worldwide leader in FTTH mass market deployment
 - More than 8 million PMC's PON ONU/ONT devices deployed
- PMC has the largest market share of FTTH silicon
 - Shipping two-thirds of the world's FTTH silicon

Agenda

- PMC-Sierra Overview
- Fiber Deployment Models
- Downstream Bridging
- TCP Download
- Congestion Management

FTTx -Deployment Options

The MDU Functionality

- MDU is an aggregation system, bridging between copper plant and fiber infrastructure
 - Up to 128 subscribers, up to 8 services per subscriber
- Aggregation and QoS comply with TR-156
 - Mapping of subscriber flows into queues / T-CONTs
- Multicast-aware bridging in the MDU IGMP snooping and proxy
- DSL Aggregator/Ethernet Switch is unaware of 'real' upstream allocated throughput/speed

Agenda

- PMC-Sierra Overview
- Fiber Deployment Models
- Downstream Bridging
 - UNI throughput has an effect on UDP services
- TCP Download
- Congestion Management

Downstream Bridging in the MDU Assumptions

- Many services today are based on UDP protocol
 - IPTV
 - VoD

10

- Audio streaming
- In most cases, the subscriber SLA includes guaranteed data throughput and the above services are additional to the guaranteed SLA
- The carrier wants to burst these services downstream as fast as possible
 - Clear sessions quickly
 - Improve customer experience
-but, without service degradation to other users
- The ONT burst handling capability is key to achieving high quality

Downstream Bridging in the MDU Bit Rates – Does the UNI Match the PON Speed?

 Bridging speed is perceived to be the PON downstream speed

EPON: 1 Gbps

GPON: 2.488 Gbps

10G EPON / GPON: 10 Gbps

- Perception: "GPON is faster than EPON" Is it really so?
- ONT downstream speed and burst handling depend on the width of the narrowest pipe in the chain: the UNI

- 1G EPON and 10G xPON have matching Ethernet bit rates
- GPON does not have a matching bit rate

Downstream Bridging in the MDU UNI Implementation for Maximum Service

Enabling connectivity. Empowering people.

- FTTB: MDU serving 32 subscribers
 - PON-fed VDSL DSLAM, VDSL IADs; or
 - PON-fed MDU with FE to the apartments, RGs
 - All 32 subscribers share a single uplink
- Triple-Play Service: VoIP, IPTV, Data over the user port
- EPON line rate is 1Gbps, so single
 GbE UNI is the straightforward choice
- But GPON line rate is 2.488Gbps, why settle for 1Gbps UNI?
- Wire speed downstream provides:
 - Maximum utilization of the GPON network
 - More bandwidth to the user

PAS7401 GPON ONT bridges 2Gbps constant throughput at any packet size

Agenda

- PMC-Sierra Overview
- Fiber Deployment Models
- Downstream Bridging
- TCP Download
 - The effect of upstream latency on TCP performance
- Congestion Management

TCP Service in the PON Network Assumptions

- The majority of data services are TCP-based
 - Web surfing
 - Email
 - FTP download
 - File sharing

- Subscriber SLA guarantees data throughput
- The carrier wants to burst these services downstream as fast as possible
 - Clear open sessions quickly
 - Improve customer experience
-but, without service degradation to other users
- The link latency is key to achieving high quality

TCP Performance No Correlation with Link Speed—Latency is Critical

TCP throughput basics

- Theoretical max throughput [Mbps] =
 packet size [Kbit] / RTT [ms]
- Realistic Max Throughput [Mbps] =~ TCP Window size [Kbit] / RTT [ms]
- GPON's higher bit rate is irrelevant if latency is not controlled

Low latency equals:

- Faster TCP download
- Better customer experience
- Shorter time for session completions
- Simpler shaping of bursts

Max Theoretical Throughput

DBA and Latency Not Just OLT

 Low latency upstream channel is a joint responsibility of the OLT and ONT

GPON allows for 3 DBA types

- Static: very simple, very inefficient, not desired
- Non-Status Reporting: OLT only, simple, inefficient
- Status Reporting: OLT+ONT, efficient

18

- Real-time, accurate queue status reports by the ONT
- Short processing time at the OLT

Time

TCP Download in the PON Network Available Bandwidth Per User

- EPON and GPON can provide similar TCP throughput
 - Latency is the key
 - Downstream bit rate is secondary

GPON

- PMC chipset DBA support is the most efficient; Accurate, real-time reports at short cycles
- Other GPON chipset DBAs are very basic, reports may not be accurate, DBA cycles may be long

EPON

17

 Accurate, real-time reports at short cycles

PIVIC PMC-SIERRA Enabling connectivity. Empowering people.

Agenda

- PMC-Sierra Overview
- Fiber Deployment Models
- Downstream Bridging
- TCP Download
- Congestion Management
 - Guaranteeing VoIP quality in congested network

Congestion Management

19

- In every PON, the upstream channel is a shared media
- An ONU/ONT is allocated a fraction of the total upstream bandwidth
- In a congested upstream, it is up to the ONU/ONT to provide QoS

Handling Multiple Upstream Services A Practical Example

- Each service mapped to a different VLAN
- VoIP packets consist of both voice media and SIP messages
 - Media bandwidth: 192Kbps, constant
 - SIP bandwidth: 20Kbps, bursty
- This is how the upstream traffic is received at the UNI:

And this is the typical upstream queuing at the GPON SoC

Is This Enough to Deliver High Voice Quality?

- This queuing scheme is insufficient
 - SIP is bursty
 - SIP is lower priority than voice media
 - SIP messages can be long and cause head-of-line blocking
 - VoIP cannot suffer from latency and jitter
- When the upstream is congested, the SIP messages would impact the voice quality

True Congestion Management

- The queuing scheme must change as follows:
 - Voice media and SIP mapped to different queues
 - Queues mapped to the same GEM Port, same T-CONT
 - Strict priority scheduling, voice before SIP
- What are we solving?

22

- SIP burstiness
- Lowering the SIP priority
- Minimizing latency and jitter

PINC PMC-SIERRA Enabling connectivity: Empowering people.

Summary

- Throughput and low latency are critical for user experience
- Wire speed burst capability improves streaming
 - The UNI speed should match the PON in an MDU
- Low latency improves TCP and business services
 - Advanced DBA in the OLT
 - User- and service-aware ONU
- PMC-Sierra has solutions for both

EPON Platforms

Enabling connectivity. Empowering people.

GbE ONU

Multi-Port ONU

GPON Platforms

Enabling connectivity. Empowering people.

GbE ONT

Gateway

PMC-SIERRA Enabling connectivity. Empowering people.

10G Development Platforms

OLT

ONU

Enabling connectivity. Empowering people.